
主讲教师：汪红松

数据结构
（C语言版）（第2版）

排序

教 学 内 容

1

2

3

4

5

6

　排序的基本概念和方法

　插入排序

　交换排序

　选择排序

　归并排序

　基数排序

Contents

老师
一、串的定义
二、串的存储结构
三、串的模式匹配BF算法

交换排序

基本思想：

两两比较，如果发生逆序则交换，直到所有记录
都排好序为止。

起泡排序O(n2)
快速排序O(nlog2

n)

基本思想：
每趟不断将记录两两比较，并按“前小后大” 规则交换

一、起泡排序

21，25，49， 25*，16， 08
21，25，25*，16， 08 ， 49
21，25， 16， 08 ，25*，49
21，16， 08 ，25， 25*，49
16，08 ，21， 25， 25*，49
08，16， 21， 25， 25*，49

一、起泡排序

 优点：
每趟结束时，不仅能挤出一个最大值到最后
面位置，还能同时部分理顺其他元素；

 一旦下趟没有交换，还可提前结束排序。

void main()
{ int a[11]; /*a[0]不用，之用a[1]~a[10]*/

int i,j,t;
printf("\nInput 10 numbers: \n");
for(i=1;i<=10;i++) scanf("%d",&a[i]); printf("\n");
for(j=1;j<=9;j++)
 for(i=1;i<=10-j;i++)
 if(a[i]>a[i+1]) {t=a[i];a[i]=a[i+1];a[i+1]=t;}//交换
for(i=1;i<=10;i++) printf("%d ",a[i]);

}

一、起泡排序

38 49 65 76 13 27 30 97

第
一
趟

38 49 65 13 27 30 76

第
二
趟

38 49 13 27 30 65

第
三
趟

38 13 27 30 49

第
四
趟

13 27 30 38

第
五
趟

13 27 30

第
六
趟

49 38 65 97 76 13 27 30

初
始
关
键
字

n=8

38

49

76

9713

9727

9730

97

13

76

76

7627

30

13

6527

6530

65

13

13

49

4930

4927

3827

3830

38

13 27

第
七
趟

排序后序列为：13 27 30 38 49 65 76 97

一、起泡排序

例

 void bubble_sort(SqList &L)
 { int m,i,j,flag=1; RedType x;
 m=n-1;
 while((m>0)&&(flag==1))
 { flag=0;
 for(j=1;j<=m;j++)
 if(L.r[j].key>L.r[j+1].key)
 { flag=1;
 x=L.r[j];L.r[j]=L.r[j+1];L.r[j+1]=x; //交换
 }//endif
 m--;
 }//endwhile
 }

一、起泡排序

1.算法分析

• 设对象个数为n
• 比较次数和移动次数与初始排列有关

只需 1趟排序，比较次数为 n-1，不移动。

while((m>0)&&(flag==1))
 { flag=0;
 for(j=1;j<=m;j++)
 if(L.r[j].key>L.r[j+1].key)
 { flag=1; x=L.r[j];L.r[j]=L.r[j+1];L.r[j+1]=x; }
 ……

最好情况下：

一、起泡排序

u时间复杂度
为 o(n2)

)(
2
1)(2

1

1
nnin

n

i






)(
2
3)(3 2

1
nnin

n

i




需 n-1趟排序，第i趟
比较n-i次，移动3(n-i)
次

最坏情况下：

u空间复杂度
为 o(1)

u是一种稳定的
排序方法。

1.算法分析一、起泡排序

二、快速排序

基本思想：

•任取一个元素 (如第一个) 为中心

•所有比它小的元素一律前放，比
它大的元素一律后放，形成左右两
个子表；

•对各子表重新选择中心元素并依
此规则调整，直到每个子表的元素
只剩一个

0 1 2 3 4 5

pivotkey

pivotkey

pivotkey

二、快速排序

二、快速排序

pivotkey

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

6597

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

76 13

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

7613

13 27

2749

49

highlow

49

界点

二、快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

7613

13 27

2749

49

highlow

49

界点

快速排序

 0 1 2 3 4 5 6 7 8

49

38

38 65

65 97

97 76

7613

13 27

27 49

49

highlow

49

界点

二、快速排序

A

每一趟的子表的形成

是采用从两头向中间

交替式逼近法；

B

由于每趟中对各子表
的操作都相似，可采
用递归算法。

void main ()

 { QSort (L, 1, L.length); }

void QSort (SqList &L，int low, int high)

{ if (low < high)

 { pivotloc = Partition(L, low, high) ;

 Qsort (L, low, pivotloc-1) ;

 Qsort (L, pivotloc+1, high)

 }

}

二、快速排序

int Partition (SqList &L，int low, int high)
{ L.r[0] = L.r[low]; pivotkey = L.r[low].key;
 while (low < high)
 { while (low < high && L.r[high].key >= pivotkey) --high;
 L.r[low] = L.r[high];
 while (low < high && L.r[low].key <= pivotkey) ++low;
 L.r[high] = L.r[low];
 }
 L.r[low]=L.r[0];
 return low;
}

二、快速排序

可以证明，
平均计算时
间是
O(nlog2n)。

1.算法分析

实验结果表明：
就平均计算时间
而言，快速排序
是我们所讨论的
所有内排序方法
中最好的一个。

快速排序是递
归的，需要有
一个栈存放每
层递归调用时
参数（新的
low和high）。

最大递归调用
层次数与递归
树的深度一致，
因此，要求存
储开销为
O(log2n) 。

二、快速排序

2
1

2
1 21

1

nnnin
n

i






)()(

最坏

从小到大排好序，递归树成为单支树，每次
划分只得到一个比上一次少一个对象的子序
列，必须经过 n-1 趟才能把所有对象定位，
而且第 i 趟需要经过 n-i 次关键码比较才能找
到第 i 个对象的安放位置。

最好

划分后，左侧右侧子
序列的长度相同。

1.算法分析二、快速排序

时间效率：
O(nlog2n) —每
趟确定的元素
呈指数增加；

1 2 3

稳 定 性：
不稳定 —可选
任一元素为支点。

空间效率：
O（log2n）—
递归要用到栈
空间；

1.算法分析二、快速排序

小结

1. 冒泡排序
2. 快速排序

